本書主要由習(xí)題組成,全書共收錄了303道習(xí)題及其詳盡的解答,全書通過用收錄習(xí)題的形式來系統(tǒng)全面地介紹有關(guān)數(shù)項(xiàng)級數(shù)的知識,書中題型廣泛、覆蓋知識點(diǎn)全面,方便讀者在掌握基本知識點(diǎn)的同時,更能夠靈活地運(yùn)用和理解知識點(diǎn)、
本書對于無窮乘積及其對解析函數(shù)的應(yīng)用給予了更深層次的介紹,本書總結(jié)了一些計算無窮乘積的常用方法和慣用技巧.敘述嚴(yán)謹(jǐn)、清晰、易懂.
本書是根據(jù)理工科數(shù)學(xué)物理方程教學(xué)大綱的要求及學(xué)科發(fā)展需求編寫的,全書共分十一章,內(nèi)容包括數(shù)學(xué)模型的建立及定解問題,方程的分類和化簡,特征線積分法,分離變量法,積分變換法和格林函數(shù)法.為了內(nèi)容的完備性,特意補(bǔ)充了傅里葉級數(shù)的內(nèi)容。
本書主要內(nèi)容包括復(fù)數(shù)與復(fù)變函數(shù)、解析函數(shù)、復(fù)變函數(shù)的積分、復(fù)級數(shù)、留數(shù)、Fourier變換和Laplace變換共七章內(nèi)容。每節(jié)都配有適量的練習(xí)題,每章末附有內(nèi)容小結(jié)和復(fù)習(xí)題,書后附有部分習(xí)題參考答案,以便學(xué)生自主學(xué)習(xí)。書末附有Fourier變換和Laplace變換簡表,便于讀者查閱使用。書中標(biāo)有*號部分供讀者選學(xué)使用。
為方便讀者使用由重慶大學(xué)出版社出版的《微積分》教材,學(xué)好大學(xué)數(shù)學(xué),作者團(tuán)隊(duì)編寫了與該教材同步配套的“學(xué)習(xí)指導(dǎo)教程”。該教輔書籍根據(jù)教材順序編排了相應(yīng)的學(xué)習(xí)輔導(dǎo)內(nèi)容,其中每一章節(jié)的設(shè)計中包括了該章的內(nèi)容提要、學(xué)習(xí)重難點(diǎn)、典型例題分析、本章自測題、自測題題解以及對應(yīng)教材B組題的詳細(xì)解答。上述設(shè)計有助于讀者在課后自主研讀時通
第一章極限與連續(xù)第一節(jié)初等函數(shù)第二節(jié)函數(shù)的極限第三節(jié)極限的性質(zhì)和運(yùn)算法則第四節(jié)無窮小的階和兩個重要極限第五節(jié)函數(shù)的連續(xù)性復(fù)習(xí)題一第二章一元函數(shù)微分學(xué)及其應(yīng)用第一節(jié)導(dǎo)數(shù)的概念第二節(jié)導(dǎo)數(shù)的四則運(yùn)算法則、高階導(dǎo)數(shù)第三節(jié)復(fù)合函數(shù)的導(dǎo)數(shù)反函數(shù)的導(dǎo)數(shù)第四節(jié)隱函數(shù)的導(dǎo)數(shù)由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)第五節(jié)微分及其在近似計算中的應(yīng)用復(fù)習(xí)
本書依據(jù)教育部委托北京大學(xué)和中國人民大學(xué)等有關(guān)院校擬訂的《經(jīng)濟(jì)管理學(xué)科數(shù)學(xué)基礎(chǔ)教學(xué)大綱》(草案)對一元和多元微積分(包括無窮級數(shù)和常微分方程,差分方程)的基本內(nèi)容作了系統(tǒng)的論述,重點(diǎn)闡述了微積分的概念和方法在經(jīng)濟(jì)和管理中的應(yīng)用,配有較多的例題和不同層次的習(xí)題,其中有些是歷屆經(jīng)濟(jì)管理類專業(yè)的研究生入學(xué)考試試題。書中概念的
短短八講,不僅讓你了解數(shù)學(xué)分析的概貌,更讓你領(lǐng)會數(shù)學(xué)分析的精髓。這本由著名蘇聯(lián)數(shù)學(xué)家和數(shù)學(xué)教育家辛欽潛心編著的經(jīng)典教材,思路清晰,引人入勝,全面梳理了數(shù)學(xué)分析的主要內(nèi)容,涉及連續(xù)統(tǒng)、極限、函數(shù)、級數(shù)、導(dǎo)數(shù)、積分、函數(shù)的級數(shù)展開以及微分方程等主題。本書原是作者在國立莫斯科大學(xué)為工程師授課的教案。書中選材獨(dú)到,敘述深入淺出
本書主要特色是結(jié)構(gòu)清晰、概念準(zhǔn)確、深入淺出、重視應(yīng)用,便于教師教學(xué)與學(xué)生自學(xué),且能啟發(fā)和培養(yǎng)學(xué)生的數(shù)學(xué)思維能力與自學(xué)能力。全書內(nèi)容包括:函數(shù)、極限、導(dǎo)數(shù)與微分、中值定理與導(dǎo)數(shù)的應(yīng)用、不定積分、定積分、多元函數(shù)微積分、微分方程、無窮級數(shù)、微積分在經(jīng)濟(jì)中的應(yīng)用。為適應(yīng)分層教學(xué)的需要,部分內(nèi)容設(shè)置了*號,使用本書的高校在實(shí)際
《數(shù)學(xué)分析講義》分上、下兩冊,《數(shù)學(xué)分析講義(上冊)》為上冊.內(nèi)容包括函數(shù)、數(shù)列極限、函數(shù)極限、連續(xù)函數(shù)、導(dǎo)數(shù)與微分、微分中值定理及其應(yīng)用、實(shí)數(shù)系的完備性及其應(yīng)用、導(dǎo)數(shù)在研究甬?dāng)?shù)上的應(yīng)用、不定積分、定積分、廣義積分.《數(shù)學(xué)分析講義(上冊)》在章節(jié)安排上,由淺人深,逐步展開,編排合理;注重對基礎(chǔ)知識的講述與基本能力的訓(xùn)練