![]() ![]() |
電子電路基礎(chǔ) ![]() 為了實現(xiàn)課程知識體系內(nèi)在的貫通和平滑過渡,電子科技大學(xué)將電子信息類專業(yè)的主干課模擬電路基礎(chǔ)和電路分析整合成電子電路基礎(chǔ)課程,本書是該課程英文課堂的配套教材。第一部分主要講述電路的模型及基本的電路定律,電路分析實際上是對電路的模型進行分析,學(xué)習(xí)基爾霍夫等基本的電路定律才能對電路模型進行正確的數(shù)學(xué)求解。疊加定理是線性電路的一個重要定理,也是后續(xù)基本放大電路交直流分析的重要理論依據(jù),同時配合戴維南定理和諾頓定理,大大簡化電路分析的難度。第二部分進入模擬電路的學(xué)習(xí),基本放大電路的時域分析和頻域分析是模擬電路基礎(chǔ)的核心,也是后續(xù)研究生課程模擬集成電路分析與設(shè)計的重要鋪墊,對于有志于從事集成電路芯片設(shè)計的學(xué)生而言,基本放大電路這部分知識是重中之重,同時需要配合仿真工具強化理解。第三部分主要講解應(yīng)用集成運算放大器的范例,通過集成運算放大器和反饋可以實現(xiàn)對數(shù)、指數(shù)運算電路和乘法、除法運算電路,低通、高通、帶通和帶阻濾波電路,學(xué)生可以自行選擇商用集成運放芯片搭建運算或者濾波電路,以加強實踐能力。 (1) 幫助學(xué)生掌握電路的基本理論和基本分析方法,為學(xué)習(xí)后續(xù)課程準備必要的電路知識。
電路分析和模擬電路基礎(chǔ)兩門課程合并之后,電路分析的內(nèi)容刪減了約一半,這是因為隨著電子電路技術(shù)日新月異的發(fā)展,電路的計算機輔助分析已經(jīng)成為普遍采用的科學(xué)研究方法。電子設(shè)計自動化及各種電路仿真軟件的飛速發(fā)展大大簡化了過去繁雜的電路分析和計算,因此,應(yīng)該強化電路計算機輔助分析,使學(xué)生初步掌握大規(guī)模電路計算機輔助分析的方法和過程,建立科學(xué)計算的概念,不宜過細地分析模塊的內(nèi)部原理、進行繁雜的電路計算; 但經(jīng)典的電路分析理論知識及向模擬電路基礎(chǔ)過渡的知識必須精講,并及時準確地進行歸納總結(jié)。 電路分析課程應(yīng)該定位于為模擬電路基礎(chǔ)作鋪墊,電路與電路模型及電路分析方法兩章的學(xué)習(xí)使學(xué)生能掌握電子線路的基礎(chǔ)知識,對電路的復(fù)雜工程問題進行抽象和表達,并對所建立的模型完成準確的推導(dǎo)、計算。學(xué)習(xí)了電路分析中的電路模型和電路分析方法兩章后就可以開始學(xué)習(xí)模擬電路基礎(chǔ)中的半導(dǎo)體器件和單管放大電路兩章,因為學(xué)生一旦建立起電路模型的基本概念并掌握了疊加定理、戴維南定理及諾頓定理,就可以運用這些定理靈活分析三極管和場效應(yīng)管雙口網(wǎng)絡(luò)交流小信號等效放大電路。例如,單獨對放大器進行交流分析時,可以將放大器視為無源雙口網(wǎng)絡(luò),而考慮信號源之后,放大器作為信號源的負載,應(yīng)該將放大器和負載合并視為無源單口網(wǎng)絡(luò),無源單口網(wǎng)絡(luò)等效為電阻Ri,即放大器的輸入電阻Ri是信號源的負載電阻,而從負載端分析,信號源與放大電路等效為含源單口網(wǎng)絡(luò),對于含源單口電路的分析,采用戴維南定理或者諾頓定理畫出等效電路,將其等效為開路電壓源Uoc與輸出電阻Ro的串聯(lián)或者短路電流源Isc與輸出電阻Ro的并聯(lián)。 在模擬電路基礎(chǔ)中講到場效應(yīng)管的分析時要用到疊加定理,需要特意強調(diào),只有把晶體管用交流小信號模型做線性化處理之后才能用疊加定理; 否則,非線性電路不能用疊加定理進行求解。含有受控電源的戴維南定理、諾頓定理的計算,學(xué)生不知道如何將電路劃分成單口網(wǎng)絡(luò),講述例題時應(yīng)該有多種思路和劃分方法,讓學(xué)生靈活掌握單口的概念,無論對電路怎么劃分,都能得出正確答案,使學(xué)生掌握不同方法的優(yōu)點和局限性,有效解決電子系統(tǒng)實現(xiàn)過程中的復(fù)雜工程問題。另外,對于含有受控電源的節(jié)點分析法,讓學(xué)生盡量抓住控制量和受控量,主要看受控電源關(guān)聯(lián)幾個節(jié)點,對于關(guān)聯(lián)一個節(jié)點和關(guān)聯(lián)兩個節(jié)點的方法,上課時都要給出實例,并增加課堂練習(xí)。 正弦穩(wěn)態(tài)電路的學(xué)習(xí)將為放大電路的頻率特性作鋪墊,這是由于分析放大電路的頻率特性(也稱頻率響應(yīng))時,通常對放大電路輸入正弦量,研究放大電路的幅頻特性和相頻特性,而正弦信號是時變信號,其幅度和相位隨著時間的變化而改變。對于時變信號的研究通常采用相量法,相量是電子工程學(xué)中用來表示正弦量大小和相位的矢量,當(dāng)頻率一定時,相量唯一地表征了正弦量。放大電路頻率特性本質(zhì)上是正弦穩(wěn)態(tài)電路的相量分析,因此,在學(xué)習(xí)放大電路的頻率特性之前,需要先講述正弦穩(wěn)態(tài)電路,使學(xué)生能靈活運用相量法分析放大電路的頻率特性,深刻理解放大倍數(shù)是信號頻率的函數(shù),隨著輸入信號頻率低或高到一定程度,放大倍數(shù)都會下降并產(chǎn)生相移。 總之,此教學(xué)改革立足于打破原有的分段式教學(xué)模式,實現(xiàn)課程知識體系內(nèi)在的貫通和平滑過渡,推進課程內(nèi)容有機融合,培養(yǎng)學(xué)生的創(chuàng)新思維與工程實踐能力、解決復(fù)雜問題的決策力,以及自主學(xué)習(xí)和終身學(xué)習(xí)的能力。 在開展中文課堂教學(xué)改革的同時,電子科技大學(xué)格拉斯哥學(xué)院等單位也在進行英文課堂授課,本書是英文課堂的配套英文教材,除內(nèi)容簡介、前言、參考文獻等附文部分用中文表述外,其余部分都是用英文表述的。如果讀者英文閱讀或理解有障礙,可對照本書中文版《電子電路基礎(chǔ)》(樊華主編,清華大學(xué)出版社出版)。 感謝清華大學(xué)出版社的編校人員,沒有他們的辛勤工作,本書的出版工作難以順利完成。 由于編者水平有限,書中難免存在不足之處,懇請廣大讀者批評指正。
樊華,電子科技大學(xué)教授,博士生導(dǎo)師。主講本科生專業(yè)基礎(chǔ)課電路分析與電子線路模擬電路基礎(chǔ)電子電路基礎(chǔ),主講研究生專業(yè)基礎(chǔ)課模擬集成電路分析與設(shè)計, 近五年總計授課852學(xué)時,每年評教結(jié)果為五星(優(yōu)秀),所授課程均為解決我國缺芯之痛打通人才培養(yǎng)最后一公里的集成電路重要理論基礎(chǔ)課程。作為項目負責(zé)人主持8項教改項目,4項校級教改項目,以第一作者身份在《實驗技術(shù)與管理》(清華大學(xué)主辦)等發(fā)表教學(xué)研究論文21篇(SCI期刊2篇,EI國際會議10篇,核心期刊9篇)。2021年,參賽項目《三軸霍爾傳感器芯片設(shè)計》在第一屆全國博士后創(chuàng)新創(chuàng)業(yè)大賽全國總決賽中總分第一,榮獲金獎。2022年,參賽項目獲得廣東省眾創(chuàng)杯創(chuàng)業(yè)創(chuàng)新大賽之科技海歸領(lǐng)航賽特等獎。 Chapter 1Introduction 1.1History 1.2Overview 1.3Simulation Tool Chapter 2Circuit Model 2.1Lumped Circuit 2.2Resistor and Its Circuit Model 2.2.1Resistor 2.2.2Circuit Model of Resistor 2.2.3Potentiometer and Circuit Model 2.2.4Switch and Its Circuit Model 2.2.5Generalization of Resistor Definition 2.3Power Source and Its Circuit Model 2.3.1Power Source 2.3.2Circuit Model of Power Source 2.4Inductor and Its Circuit Model 2.4.1Inductor 2.4.2Circuit Model of an Inductor 2.4.3Generalization of the Definition of Inductor 2.5Capacitor and Its Circuit Model 2.5.1Capacitor 2.5.2Capacitor Circuit Model 2.5.3Generalization of Capacitor Definition 2.6Diode and Its Circuit Model 2.6.1Diode 2.6.2Main Parameters of Diodes 2.6.3The Circuit Model of Diodes 2.6.4Zener Diode 2.6.5The Circuit Model of the Zener Diode 2.7FieldEffect Transistor (FET) and Its Circuit Model 2.7.1FieldEffect Transistor (FET) 2.7.2The Main Parameters of Enhanced FieldEffect 2.7.3FieldEffect Transistor Circuit Model 2.8Bipolar Junction Transistor (BJT) and Its Circuit Model 2.8.1Bipolar Junction Transistor (BJT) 2.8.2Main Parameters of Transistor 2.8.3Circuit Model of Transistor 2.9Kirchhoffs Law 2.9.1Kirchhoffs Current Law 2.9.2Generalization of KCL 2.9.3Kirchhoffs Voltage Law 2.9.4Generalization of KVL 2.10Simulation Experiment 2.10.1Experimental Requirements and Purposes 2.10.2Diode VoltageCurrent Characteristic Circuit Problems Chapter 3Circuit Analysis Methods 3.1Two Types of Constraints and Circuit Equations 3.1.1Two Types of Constraints 3.1.2Circuit Equations 3.2The ThreeElement Method for FirstOrder Circuits 3.2.1FirstOrder RC Circuit 3.2.2Properties of Exponent 3.3Superposition Theorem and Its Application 3.3.1Superposition Theorem 3.3.2Application of Superposition Theorem 3.4Network Equivalence with the Application of Thevenins 3.4.1Network Equivalence 3.4.2Thevenins Theorem and Nortons Theorem 3.4.3Application of Thevenins Theorem and Nortons 3.5Nodal Analysis Method 3.5.1Node Voltage 3.5.2Writing the Node Equation *3.5.3Series RC Circuit with A Step Input *3.5.4Series RC Circuit with Square Wave Input 3.6Phasor Model for Sinusoidal SteadyState Circuits 3.6.1Dynamic Circuits Driven by Sinusoidal Signals 3.6.2Sinusoidal SteadyState Circuits 3.6.3Phasor Representation of Sinusoidal Quantities 3.6.4Phasor Calculation of Sinusoidal Quantities 3.6.5Phasor Model of Sinusoidal SteadyState Circuit 3.7Phasor Analysis of Sinusoidal SteadyState Circuits 3.7.1The Fundamental Method for Phasor Analysis of Sinusoidal 3.7.2Application of Superposition Theorem in Sinusoidal 3.7.3Application of Thevenin/Norton Theorem in Phasor 3.7.4Node Analysis in Sinusoidal SteadyState Circuit Phasor 3.8Frequency Characteristics of Sinusoidal SteadyState 3.8.1Transfer Function and Frequency Characteristics of 3.8.2FirstOrder LowPass Characteristic 3.8.3FirstOrder HighPass Characteristic 3.9Simulation: Thevenin Equivalent Circuits and Norton Equivalent Problems Chapter 4Basic Amplifier Circuits 4.1Performance Indicators of Amplifiers 4.1.1Amplification and Amplifiers 4.1.2Performance Indicators of Amplifier Circuit 4.2Common Source Amplifier Circuit 4.2.1Quiescent Operation Point 4.2.2Basic Performance 4.2.3Frequency Characteristic 4.3Common Drain Amplifier Circuit 4.3.1Quiescent Working Points 4.3.2Basic Performance 4.3.3Frequency characteristics 4.4Transistor Amplifier Circuit 4.4.1Common Emitter Amplifier Circuit 4.4.2Common Collector Amplifier Circuit 4.4.3Common Base Amplifier Circuit 4.4.4Summary of Equivalent Resistance 4.5Emitter Follower Simulation Experiments 4.5.1Experimental Requirements and Objectives 4.5.2Emitter Follower Circuits Problem Chapter 5MultiStage Amplifier Circuits and Operational Amplifiers 5.1Coupling Methods for MultiStage Amplifier Circuits 5.1.1Direct Coupling 5.1.2ResistanceCapacitance (RC) Coupling 5.1.3Transformer Coupling 5.1.4Optoelectronic Coupling 5.2ResistanceCapacitance (RC) Coupling MultiStage Amplifier 5.2.1Quiescent Operating Point 5.2.2Basic Performance 5.2.3Frequency Characteristic 5.3MultiStage Amplifier Circuit Simulation 5.3.1Experimental Requirements and Objectives 5.3.2Experimental Circuits 5.3.3Experimental Procedures 5.3.4Conclusion Problem Chapter 6Operational Amplifiers 6.1Integrated Operational Amplifiers 6.1.1Introduction to Integrated Operational Amplifiers 6.1.2Structural Characteristics of Integrated Operational 6.1.3The Composition of Integrated Operational Amplifier 6.1.4Voltage Transfer Characteristics of Integrated Operational 6.2Mirror Current Source 6.2.1Transistor Mirror Current Source 6.2.2Field Effect Transistor Mirror Current Source 6.2.3MultiCurrent Source Circuit 6.2.4Active Load Common Emitter Amplifier Circuit 6.3Differential Amplifier Circuit 6.3.1LongTailed Differential Amplifier Circuit 6.3.2Current Source Differential Amplifier Circuit 6.3.3Active Load Current Source Differential Amplifier 6.3.4MOSFET Voltage Differential Amplifier Circuit 6.4Complementary Output Circuit 6.4.1Basic Circuit 6.4.2Complementary Output Circuit for Eliminating Crossover 6.4.3MOSFET Class AB Output Stage Circuit 6.5Integrated Operational Amplifier 6.5.1Three Stage CMOS Operational Amplifier 6.5.2Main Performance Indicators of Integrated Operational 6.5.3Lowfrequency Equivalent Circuit of Integrated Operational Problems Chapter 7Negative Feedback Amplifier Circuit 7.1Concept of Negative Feedback Amplifier Circuit 7.1.1Judgment of Feedback 7.1.2The Four Configurations of Negative Feedback Amplifier 7.2Deep Negative Feedback 7.2.1Feedback Network Model and Feedback Factor 7.2.2The Voltage Gain of a Deep Negative Feedback Amplifier 7.3The Impact of Negative Feedback on Other Performance 7.3.1Changing the Input Impedance 7.3.2Changing the Output Impedance 7.3.3Broadening the Bandwidth 7.4Negative Feedback Amplifier Circuit Simulation Experiment 7.4.1Experiment Requirements and Objectives 7.4.2Experimental Principle 7.4.3Experimental Circuit 7.4.4Experimental Procedures 7.4.5Conclusion 7.4.6Discussion of Issues 7.5Summary Problem Chapter 8Operational Circuits and Filtering Circuits 8.1Operational Circuits 8.1.1Circuit Components 8.1.2Addition and Subtraction Operational Circuits 8.1.3Multiplication Operation Circuit 8.1.4Integral Operational Circuit and Differential Operational 8.2Filtering Circuits 8.3Integrated Operational Amplifier Application Simulation 8.3.1Operational Circuit Simulation Experiment 8.3.2Active Filter Circuit Simulation Experiment Problem Chapter 9Waveform Generating Circuit and Signal Conversion Circuit 9.1Sinusoidal Oscillating Circuit 9.1.1RC Sinusoidal Wave Generating Circuit 9.1.2LC Sinusoidal Wave Generating Circuit 9.2NonSinusoidal Wave Generator 9.2.1Comparator Circuit 9.2.2Square Wave Generation Circuit 9.2.3Triangular Wave Generation Circuit 9.2.4Waveform Conversion CircuitTriangular Wave Sine Wave 9.2.5Function Generator 9.3VoltagetoFrequency Conversion Circuit (VoltageControlled 9.3.1Overview 9.3.2Waveform Analysis 9.4Simulation Experiment 9.4.1Experiment Requirements and Objectives 9.4.2Simulation Experiment for Sine Wave Oscillator 9.4.3Square Wave Generation Circuit 9.4.4Triangle Wave Generation Circuit Problem Chapter 10AC/DC Power Sources 10.1Overview 10.1.1Performance Parameters of AC/DC Power Supply 10.1.2Composition of AC/DC Power Supply 10.2Rectifier Circuits and Filter Circuits 10.2.1Rectifier Circuit 10.2.2Filter Circuit 10.3Voltage Regulator Circuit 10.4Series Regulator Circuits and ThreeTerminal Voltage 10.4.1Basic Series Regulator Circuits 10.4.2Series Voltage Regulator Circuit with Amplification 10.4.3Integrated ThreeTerminal Regulators 10.5SinglePhase Rectifier Filter Circuit Simulation Experiment Problem 參考文獻
你還可能感興趣
我要評論
|